

Free and Open Source Geospatial Tools for Environ-
mental Modeling and Management

A. Jolmaa , D.P. Amesb, N. Horningc, M. Neteler d, A. Racicote and T. Suttonf
a Helsinki University of Technology, Espoo, Finland, ari.jolma@tkk.fi

b Geographic Information Sciences Lab, Idaho State University, Idaho Falls, ID, USA
c Center for Biodiversity and Conservation, American Museum of Natural History, New York, NY, USA

d Center for Scientific and Technologic Research, The Trentino Cultural Institute, Trento, Italy
e Ecotrust, Portland, OR, USA

f BiodiversityWorld Project

Abstract: Geospatial software tools (GIS) are used for creating, viewing, managing, analyzing, and uti liz-
ing geospatial data. Geospatial data can include socio-economic, environmental, geophysical, and technical
data about the Earth and societal infrastructure and it is pivotal in environmental modeling and manage-
ment (EMM). Desktop, web-based, and embedded geospatial tools and systems have become an essential
part of EMM. Environmental simulation models often require pre- or post-processing of geospatial data, or
they can be tightly linked to a GIS, using it as a graphical user interface (GUI). Many local, regional, na-
tional, and international efforts are underway to create geospatial data infrastructures and tools for viewing
and using geospatial data. When environmental attribute data is linked to these infrastructures, powerful
tools for environmental management are instantly created. The growing culture of free and open source
software (FOSS) provides an alternative approach to software development also in the field of GIS
(FOSS4G). For a systematic look at FOSS4G for EMM platforms, software stacks, and EMM workflows
need to be analyzed. Platform is a service abstraction on which software stacks are built. A software stack
for FOSS4G comprises system software, data processing tools, data serving tools, user interface tools, and
end-user applications. Digital map creation, support for numerical modeling, and geospatial information
systems are main areas of use for FOSS4G in EMM. The dividing line between FOSS and proprietary soft-
ware is fuzzy, partly because it is in the interest of developers of proprietary software to make it fuzzy and
partly because the end-users are getting reluctant to buy software. In the FOSS world the barriers to interop-
erabili ty are low and thus the software stack tends to be thicker than in the proprietary platform. The
FOSS4G world thrives on the evolution of software stacks and platforms. Our examples show that it is pos-
sible to build software stacks from current FOSS4G to support EMM workflows. In the examples we men-
tion for example how a particular funding agency has chosen FOSS4G solutions because of the opportuni-
ties to redistribute resulting modeling tools freely to end-users and to support general goals of openness and
transparency with respect to modeling tools.

Keywords: Free software; Open Source Software; Geospatial software; Geographic Information Systems;
Environmental modeling and management

1. INTRODUCTION

Geospatial software tools are used for creating,
viewing, managing, analyzing, and utilizing geo-
spatial data. An interoperable collection of such
tools may be called a Geographic Information

System (GIS)1. And, the development of such

1 We assume in this sentence a broad definition
for a GIS. It is also possible to assume a more re-
stricted definition and consider GIS separate from

tools and the study of their application to real-
world problem solving may be called Geographic
Information Science (GISci). Geospatial data can
include socio-economic, environmental, geophysi-
cal, and technical data about the Earth and socie-
tal infrastructure. The common characteristic of
all geospatial data is the presence of a spatial
component: objects are tied to actual places and
locations, referenced by geospatial coordinates.

Geospatial objects can encapsulate environmental
attributes and l ink to each other in models of envi-
ronmental networks. Geospatial objects can be
temporally static or dynamic; they can represent
data at a variety of spatial scales and resolutions;
and they can be very simple (e.g. points) or com-
plex (e.g. 3-D triangulated irregular networks).
Geospatial data and tools can be used to address
and answer many disparate types of questions in
most every field of study. For these and other rea-
sons, a large number of tools have been developed
for working with geospatial data. One result of the
proliferation of such tools is a coincident prolif-
eration of a large number of storage formats
which have been specifically designed for geospa-
tial data. While many of these formats are open,
i.e., their specifications have been published, oth-
ers are proprietary and do not support data inter-
operability between tools.

Desktop, web-based, and embedded geospatial
tools and systems have become an essential part of
environmental modeling and management
(EMM). With the incorporation of geospatial data
sets these systems allow new and unique views
into the environment. This is particularly true in
the case of Internet-based tools that provide wide
and relatively easy access to large geospatial data
sets and useful analyses (e.g. driving directions,
environmental data summaries, etc.) Many local,
regional, national, and international efforts are
underway to create geospatial data infrastructures
and tools for viewing and using geospatial data
and have put geospatial technology in the interna-
tional spotl ight. In many cases, these efforts build
on free and open source tools and open, published
data formats creating new challenges and oppor-
tunities for the EMM software community.

The GIS industry is growing rapidly, constituting
a $2.02 bil lion international market in 2004 [Da-
ratech, 2004]. Many very successful commercial
companies have developed over the past 25 years,
built on the model of delivering proprietary GIS
solutions and sell ing software licensing. Many

e.g., remote sensing image analysis tools and
CAD tools for geospatial data.

university curricula are taught around these soft-
ware packages and many professional modelers,
managers, and consultants depend on them in
their work. We hypothesize here that this business
model has resulted in a closed and monolithic
structure in GIS software and its development,
and that this has resulted in reduced interoperabil-
ity, software transparency, and data transferabil-
ity.

The growing culture of free2 and open source soft-
ware (FOSS) provides an alternative approach to
software development also in the field of GIS.
FOSS does not necessarily sacrifice business as-
pects of software development and application;
there are several successful companies built
around FOSS and companies are using FOSS
components to a substantial degree [Bonnici,
2006]. Indeed, the FOSS model of software devel-
opment has produced a new breed of software and
associated business models. Certainly there are
many shinning examples of FOSS successes such
as the Linux/GNU operating system and its many
brands. The community that develops FOSS for
geoinformatics (FOSS4G) has recently gained
momentum3, making it a more viable option for
environmental modelers and managers. A survey
of FOSS4G has been presented by Ramsey [2005].
Published formal comparisons between FOSS4G
and proprietary solutions are not common. Wik-
strøm and Tveite [2005] compared PostGIS and
MapServer favorably against ArcSDE and Ar-
cIMS.

The relationship between environmental models
(as software), which re-create a simplification of
events in nature, and geospatial data (as stored in
computers) has been studied for several decades.
The initial phase of this research culminated in a
series of conferences such as initial HydroGIS
[Kovar and Nachtnebel, 1993] and initial GIS/EM
[Goodchild et al, 1993], which presented the then
state-of-the-art in development and application of
geospatial tools in EMM. One result of these ef-
forts has been the birth of new disciplines of hy-

2 We mainly use the term “free” to refer to the
freedoms [Anonymous, 2005] the developer and
user has with using the software or data, not to the
price tag. Many tools are free to use or download,
and they are sometimes useful, but the distinction
is important to note.
3 We refer to the founding of OSGeo
(www.osgeo.org) and to the successes of the Open
Source Geospatial conferences, e.g., OSG’05:
http://mapserver.gis.umn.edu/community/conferen
ces/MUM3/.

droinformatics and geoinformatics. At the same
time geocomputation has also emerged as a disci-
pline, focusing on the study of geospatial phenom-
ena using computers. Despite these efforts, the
problem of efficiently connecting environmental
models and geospatial tools sti ll exists and is an
active area of research.

In this paper we examine the current state and
future prospects for free and open source geospa-
tial tools in EMM. We will analyze the current
enabling technologies and tools along with future
directions. Analysis of the role of the community
and of the community process is left for another
paper in the same workshop [Gross et al. in
prep.]. We also do not consider problems related
to intellectual property, such as licensing issues.
We restrict our description and analysis to tools,
which give modelers and managers the freedom of
adopting, using, learning, and extending the tools,
i.e., they can be considered FOSS4. The descrip-
tion reflects our current understanding of what are
or will be the key building blocks of geospatially
aware information systems for environmental
problem solving. Links to web pages of the vari-
ous software tools mentioned in this paper are not
always given since they are usually very easy to
find using Internet search tools. The discussed
FOSS4G tools are only a representative set of
what is available. Portals, such as freegis.org, at-
tempt to maintain comprehensive l ists.

For a systematic look at FOSS4G we divide our
analysis in three main parts:

(i) Platforms – Platforms are defined as the media
used to deliver FOSS4G solutions. We mainly
examine and compare the desktop and the web as
platforms. Despite this rather simplistic approach,
a platform is a very versati le, interesting, and use-
ful concept when software solutions are analyzed.
Each platform offers a unique set of functionality
and opportunity when applied to EMM.

(ii) Software Stack – Each platform has its own
specific needs and available tools for building a
working geospatial software stack. We will exam-
ine various software stacks for these two platforms
and discuss functionality as well as interoperabil-
ity. This should lead to a better understanding
what services these tools can provide to environ-
mental managers. Note that in this paper, we fo-
cus on tools, which are within the more restricted
or traditional definition of a GIS, i.e., tools that

4 Note that many proprietary tools can also be ex-
tended programmatically.

are not necessarily used for remote sensing or
CAD applications.

(iii) Workflows – Each platform and software
stack is particularly suited for specific workflows.
We wil l describe some common workflows and
show FOSS4G solutions for them. Analyzing typi-
cal “use cases” (software usage scenarios) by di-
verse user types is intended to show the strengths
and weaknesses of the current set of FOSS4G
tools available and shed l ight on future opportuni-
ties for improvement.

2. PLATFORMS

An important trend in computing is the increased
availability of new platforms: e.g. different ver-
sions of operating systems, different combinations
of hardware, and different client-server protocols
for delivering tools to users. As software becomes
increasingly important in everyday li fe, more peo-
ple use software, and more tasks are taken care of
by software, the number of existing platforms
grows. The concept has been popularized most
visibly by Ray Ozzie, CTO of Microsoft and key
developer of Lotus Notes, who has defined “plat-
form” in his weblog as “a relevant and ubiquitous
common service abstraction” 5.

The benefit of a platform to a user is a common
look and feel and an interoperable set of function-
ality. The benefit of a platform to a developer is
the ready availabil ity of interoperable tools and
services, e.g., application programmer interfaces
(APIs). A FOSS, as a platform (e.g. a Linux/GNU
distribution) provides initially a large set of ser-
vices and functionality, which is mainly controlled
by the distribution designers. Adding more ser-
vices and functionality is often technically easy at
least for technologically savvy users, but may in-
troduce maintenance problems and thus in prac-
tice may be available only to a l imited user base.
In contrast, developing proprietary software for a
proprietary operating system (OS) is usually more
limited, often only to what the OS provides.

The set of available programming languages is an
important characteristic of a platform. Java and
scripting languages are very good examples since
applications written in them are usually limited to
using only services, which are written in those
languages (or have a specific interface in the re-
spective language) and services written in another

5
http://www.ozzie.net/blog/stories/2002/09/24/soft
warePlatformDynamics.html

scripting language are typically unavailable6. The
common division to Java and C/C++ camps is
distinct also in FOSS4G but interesting practical
solutions exist: Geometry Engine Open Source
(GEOS) is a C++ port of the JTS Java Topology
Suite (JTS).

From the user’s point of view a platform is,
roughly, an OS or its user interface (UI), an appli-
cation, or some specific hardware. A desktop, for
example, is a platform where computing mainly
happens in one computer, within one OS but usu-
ally with more than one application. Application
suites, especially so called “office suites” become
very popular in the 1980’s and 1990’s and they
are essentially a platform within a platform. The
office suites have been more or less proprietary
solutions, with only few exceptions, most notably
the OpenOffice.org. Spreadsheet tools, as part of
an office suite, are a very popular platform for
small-scale modeling and management support.
Office suites do not have any noteworthy support
for working with geospatial data or doing geospa-
tial analysis. A desktop connected to local net-
works and to the internet is effectively an ex-
tended desktop platform. However, if a geospatial
system relies on services, e.g., on a spatial data-
base server, which resides in another computer,
then it operates on a network or internet platform.

The web is often used as a platform for delivering
content such as text, images, and simple applica-
tions, intended for wide distribution and use.
Some web-based systems are targeting smaller
groups and focus more on collaboration. Mobile
computing, which is characterized by small and
light-weight devices such as cellular phones and
personal digital assistants (PDAs), is another plat-
form that is growing in importance and is espe-
cially interesting to geospatial computing because
of its mobile and location-aware nature.

Each of these software platforms presents an in-
teresting set of benefits and challenges to the user
or developer of geospatial software tools and sys-
tems. For example, the desktop platform typically
has the advantage of allowing for more intensive
use of local disk space, memory, and processing
power than does a web-based platform. So for
large, computationally intensive applications us-
ing large data sets, it is generally preferable to
deploy geospatial software solutions as desktop
based applications. However, web-based applica-
tions generally have the advantage of being more

6 The Microsoft .NET Framework and its FOSS
counterpart Mono, are notable efforts to overcome
this problem.

rapidly deliverable to end-users and more easily
updated. An interesting compromise occurs when
a desktop application is developed to be “web-
aware” or “web-enabled” . In this case, the user
gains the benefit of local data processing and stor-
age while using the Internet to download software
updates and share data with a wider user commu-
nity. Such web-enabled desktop tools are growing
in popularity (e.g. Google Earth and ESRI’s Ge-
ography Network).

The Internet has been the focus of much work in
the geospatial community. Especially the specifi-
cations developed cooperatively in Open Geospa-
tial Consortium (OGC) and the efforts to develop
national spatial data infrastructures i llustrate this.
The FOSS4G community has been active in this
work and it has adopted the specifications quickly.

3. FOSS4G SOFTWARE STACK

3.1. Software stack for geospatial computation
on the desktop and web platforms

The architecture of FOSS and FOSS4G is usually
layered and thus makes up “software stacks” .
These software stacks can be very deep, the layers
at the bottom being, for example, the Linux kernel
and the GNU C library, libc. Alternatively, a
FOSS4G stack can also have at its base a proprie-
tary product such as Microsoft Windows XP and
its associated run-time l ibraries. Indeed, FOSS4G
co-exists with and adjusts to proprietary software
easily. Thus it is possible to attract individuals
who are forced to use or more comfortable using
the Microsoft operating system.

Beside the actual run-time stack, there is also the
stack of development tools, like make, which con-
trol the compilation of software into binary form,
and Glade2, one of many graphical user interface
(GUI) development tools. Open source integrated
development environments such as SharpDevelop
or Eclipse provide support for developers of Mi-
crosoft .NET or Java based FOSS tools. The run-
time stack consists also of tools like the Apache
HTTP server and various libraries. For mixing
FOSS and proprietary software on platform level
several solutions exist. For example MinGW im-
plements the GNU platform partially in Microsoft
Windows. Several FOSS applications are also
available for proprietary platforms and/or multiple
platforms.

Some software is intended exclusively for the web
platform, some is usable on both the web and
desktop platforms, and other software is intended
primarily for the desktop. Clearly, it is not possi-

ble to distinguish absolutely one platform from the
other. Rather, we simply attempt to define a typi-
cal desktop solution and a typical web solution.
The specific and unique software stack that is set
up to support geospatial computations makes up
the platform together with the hardware and the
rest of the computational environment.

Generic Stack FOSS4G Stack Grouping

Application
Extensions/Plug-ins

Environmental modeling and data
analysis tools (e.g. US EPA’s

BASINS 4, etc.)

End User
Application

Application

Quantum GIS, GRASS, OSSIM,
JUMP, uDig, MapWindow GIS

Application Dev.
Environment

Eclipse, QT, OpenGL,
SharpDevelop

User Interface

High Level Util ities

GeoTools, PostGIS,
MapWinGIS ActiveX

Data Serving

High Level Scripting
Languages

PHP, Perl, Python, R, R spatial Data Processing

Low Level Util ities

Shapelib, JTS/GEOS,
GDAL/OGR, GMT

Low Level
Languages

C, C++, Java, Fortran, C#,
VB.NET

Operating System

Linux, Darwin, Cygwin,
Microsoft Windows

System Software

 Generic Stack
 FOSS4G Stack

 Gr ouping
 Application Web

Site

Decision support system,
environmental data viewer, etc.

End User

Application
 Client Side Browser

 Firefox, Safari, Netscape
 Client Side Scripting

JavaScript, Java, Perl, Python

User Interface


~~~~~~~~~~~Internet~~~~~~ ~~~~~ 
  Server Side  

Scripting 
  

PHP, Python, Perl 
  

High Level Utilities 
  MapServer, GeoServer, GRASS 

  

Data Serving 
  

Low Level Util ities 
  

  
Shapelib, JTS/GEOS, GDAL/  

OGR, PostGIS, R spatial, GMT 
  High Level Scripting  

Languages 
  

PHP, Perl Pyt hon 
  

Data Processing 
  

Low Level  
Languages 

  
C, C++, Java, Fortran 

  
Operating  

System/Drivers 
  

  

Linux, Darwin, Cygwin 
  

  

System Software 
  

   

Figure 1. The tool layers of the desktop platform 
(above) and the web platform (below) and group-
ing of the layers. The software l ist is an example 
and in some cases is very incomplete. Somewhat 

similar diagrams have been presented e.g. by 
Ticheler [2005]. 

 

In Figure 1. we present typical software stacks for 
desktop and web platforms. The system software 
layers in the two stacks contain many common 
items. This synergy between the software stacks 
shows great promise in intertwining capabil ities. 
For example, it is envisioned that future desktop 
applications will rely more on web-services, while 
web-based applications will  contain more func-
tionality traditionally relegated to the desktop 
platform. The commonality of the lower layers of 
the software stacks allows for much of this inte-
gration. 

We have included Microsoft Windows into the 
stacks. Although it is not a FOSS operating sys-

tem, it is the most ubiquitous desktop OS and 
supports a wide array of FOSS and FOSS4G tools. 

 

3.2   System Software 

System software is the foundation on which the 
complete stack is built, providing software inter-
operabili ty and a common look and feel for tools. 
In the web-based FOSS4G software stack, the 
Linux operating system is the most common OS 
and has proven to be an exceptionally robust for 
mapping applications. Linux based geospatial 
tools for the desktop are also readily available.  
The Microsoft Windows/.NET framework system 
software creates an interesting opportunity for 
FOSS software developers and environmental 
modelers to build free and open source tools on a 
common proprietary platform. 

System software is typically generic and not di-
rectly relevant for geospatial computation. The 
case of Java vs. other languages is one noteworthy 
exception. Java is a high-level programming lan-
guage but it is also often used instead of C or C++ 
for developing low-level libraries and tools. It is 
possible to build Java interfaces to C libraries 
(Java is one of languages supported by Swig, a 
FOSS generic interface generator) but it is consid-
erably more difficult and not sensible to use Java 
from other languages. It is also often preferred to 
have “pure”  Java solutions for various reasons. 
The result has been that software stacks are often 
divided to Java-based solutions and to other solu-
tions. However, the internet constitutes such a 
strong dividing line that it is easy to mix Java so-
lutions on the server or client side with other solu-
tions on the other side. 

 

3.3   Data processing 

In the data processing layer, data or essential in-
formation about it is retrieved into system memory 
and is processed in some way. The way the data 
are accessed and what kind of data structures are 
used is often specific to different FOSS4G tools. 
One benefit of the FOSS platform is the unob-
structed access to these details.  

Data processing is divided here into data man-
agement, format processing, and geo-analytical 
processing. Geoprocessing is examined more 
carefully since it is most important from the point 
of view of environmental modeling. Data 
processing tools are quite common between 
desktop and web platforms. 



 

The foundation of the domain specific interopera-
bili ty of the geospatial tools is in this layer. Solv-
ing of complex problems in EMM requires com-
plex workflows, which usually requires interop-
eration of several tools in order to be effective. 

An example piece of data processing software 
specific to geospatial computations is a tool to 
transform datasets from one geospatial coordinate 
system to another. The most common FOSS4G 
tool for this is PROJ.4. PROJ.4 contains a system 
for describing common projections and for con-
verting data between projections. 

 

Data management 

Data management is a critical function of GIS for 
EMM. Both the number of required geospatial 
datasets and their size are often voluminous. Geo-
spatial datasets are often stored within specialized 
fi le formats or data servers. Generally, geospatial 
data are described and stored in either a vector or 
raster based model and file format. Raster data are 
typically stored as a matrix of data, either in tiles 
or in large singular files in a fi le system. Vector 
data are either stored as fi les or in tables in data-
base management systems. Simple vector data 
does not consider the topology or connectivity of 
the spatial primitives and many formats support 
only this kind of data. Geospatial data sets and 
information about them, i.e. meta data, are pro-
vided for use from servers either through net-
worked file systems or by the http protocol, typi-
cally using protocols standardized by the Open 
Geospatial Consortium (OGC). 

 

Format processing 

The GDAL/OGR library and associated utili ty 
programs provide widely used basic functionality 
on the FOSS platform. GDAL provides a general-
ized API for raster data and a way to implement 
drivers for raster data formats and OGR does the 
same for vector data. GDAL can be used to read, 
access, manipulate, and to write in over 50 raster 
fi le formats; OGR enables programs to read, ac-
cess, manipulate, and to write in over 20 vector 
fi le formats and database systems. The 
GDAL/OGR library is written in C++ with C 
wrapper and it has been ported to several common 
operating systems. The OGR library can option-
ally be compiled to directly include the GEOS 
library. GEOS gives to OGR some topological 
capabil ities. A Swig interface has been developed 
and used to create bindings for scripting lan-

guages like Python, Perl, and Ruby to the 
GDAL/OGR library. 

 

Geo-analytical tools 

The geo-analytical functionality on the FOSS plat-
form is very strong in theory since FOSS is often 
the platform of choice for academic research pro-
jects. In practice the uti lization of all that is possi-
ble is sometimes difficult because of interoperabil-
ity problems and a sometimes steep learning curve 
to use the tools. Examples of analytical and geo-
analytical tools in the FOSS platform include 
GSL, R, and CGAL. GSL is a general numerical 
library. The R project develops a language and 
platform for statistical computing and associated 
graphics. The R spatial project uses and extends R 
for spatial statistics. CGAL is a high quality li-
brary for computational geometry.  

JTS (Java Topology Suite) and its C++ port GEOS 
is a library for basic computational geometry op-
erations as binary predicates and overlays. Binary 
predicates return a Boolean value indicating 
whether two spatial objects have a named spatial 
relationship. Examples of binary predicates are 
“ intersects”  and “within” . Spatial overlays take 
one or two spatial objects as arguments and return 
a new spatial object. Examples are “ intersection”  
and “buffer” . GEOS is used by GDAL/OGR and 
PostGIS (see below). The JTS/GEOS library pro-
vides the OGC standard spatial data types. [The 
JUMP-Project.Org, 2006] 

The main analytical method family for raster data-
sets is map algebra (a term coined by Tomlin 
[1990]), which extends the standard algebra of 
scalar values to raster data. For example in map 
algebra the sum of two similarly projected and 
sized rasters is a raster, whose cell values contain 
the sums of respective cell values of the argument 
rasters. This basic concept may be extended in 
map algebra into spatial neighborhoods, zones, 
the 3rd dimension (elevation/depth, voxels), and 
into raster time series analysis [Karssenberg, 
2005]. The GRASS function, “r.mapcalc” , sup-
ports the ordinary arithmetic and logical opera-
tors, trigonometric etc. functions and it has the 
concept of cell neighborhood, the r.series com-
mand supports time series statistics. libral is a C 
library, which supports similarly basic map alge-
bra. The Geo::Raster module extends the Perl 
programming language with map algebra using 
libral. 

More complex geospatial analytical methods in-
clude spatial interpolation, terrain analysis (in-
cluding hydrological analysis), applications of 



 

graph theory (e.g. shortest path computation), 
spatial data mining (e.g. discovery of spatial phe-
nomena). GRASS is traditionally strong in these 
areas (see e.g., Neteler and Mitasova [2004]) for 
example libral and TauDEM provide tools for 
hydrological analysis. 

The most complex geo-analytical tools are those 
that support spatial modeling. These tools may be 
implemented with the help of basic geo-analytical 
methods such as map algebra but they may also 
work directly on geospatial data. These tools are 
typically implemented as plug-ins for desktop GIS 
or as stand-alone applications. Examples include 
openModeller and SME. openModeller is a spatial 
distribution modeling l ibrary, providing a uniform 
method for modeling distribution patterns using a 
variety of modeling algorithms. openModeller can 
be used via programmatic interfaces, including 
SOAP and SWIG-python, as well as via a user 
friendly desktop graphical user interface and as a 
Quantum GIS plug-in. [openModeller develop-
ment team, 2006] SME is an integrated environ-
ment for developing spatial simulation models 
[Maxwell et al., 1999].  

Visualization is an essential element of geospatial 
analysis. All GIS provide at least some kind of 
two- and possibly three-dimensional visualization 
capabil ities, some with animation features. The 
boundary between mapping and analytical geo-
visualization is fuzzy. Visualization (mapping) is 
an important part of data serving and user inter-
face (also analytical geovisualization). Tools for 
analytical geovisualization are often large stand-
alone applications, like for example the Vis5D or 
Paraview. 

OSSIM is a high performance image processing 
library and ImageLinker is the GUI application 
providing access to the OSSIM libraries. Image-
Linker is capable of image visualization, of mo-
saicing a large number of images, and of simple 
image manipulation tasks like contrast enhance-
ments. ImageLinker lacks some important capa-
bili ties, for example image classification and vec-
tor capabili ties. 

Terralib and Terraview are a cross platform Geo-
spatial analysis library and an accompanying front 
end GUI. Terralib stores all data (including raster) 
within the RDBMS environment. 

 

3.4  Data Serving 

Web servers 

The data serving layer exists mainly in the web 
platform as tools that receive data from the data 

processing layer and serve it to the user interface 
layer. The data serving layer is thin but important 
since it requires standardization and enables a 
wholly new type of software, i.e., collaborative 
applications. Collaborative applications are im-
portant and will  probably become even more im-
portant for EMM.  Tools such as MapServer and 
MapGuide, which mainly work in this layer have 
also become hugely popular in mainstream web-
mapping applications. 

The two main FOSS tools for serving geospatial 
data via the web are the MapServer and 
GeoServer. MapServer can be used to serve maps 
(as images) and thus create interactive websites, 
but it can also be used to serve data according to 
the WMS (map layer) and WFS (vector data) stan-
dards. GeoServer supports WMS and WFS-T (“T”  
denoting transactional, WFS-T supports add, de-
lete, and update of features) specifications. 

  

Spatial databases 

In the desktop, this layer is often hidden within an 
application or does not exist. The only noteworthy 
exception is the attribute database connection, 
which often is based on standards (especially 
SQL).  

A relational database management system 
(RDBMS) is in itself a platform for developing 
applications, functionality, and services. On the 
FOSS platform the two main RDBMSs are 
MySQL and PostgreSQL. A general perception is 
that MySQL is less featured (in SQL sense) than 
PostgreSQL but faster. PostgreSQL offers a richer 
array of DBMS features, such as triggers and it 
supports a variety of procedural languages. Geo-
spatial data are not easy to store in a standard 
RDBMS, thus spatial extensions have been devel-
oped and standardized by the OGC. PostGIS pro-
vides the spatial data types and spatial queries for 
PostgreSQL, and more recent versions of MySQL 
have been adding spatial data handling capabili-
ties, too. 

 

Scripting languages 

Scripting languages can also be considered as a 
part of the data serving layer. Scripting languages 
provide very powerful scripting capabilities be-
sides being general purpose programming lan-
guages. Scripting languages can usually be ex-
tended by modules, which can be interfaces to 
data access, graphics or other libraries or they can 
be extensions written in the scripting language 
itself. The module system and general purpose 



 

programming capability make scripting languages 
very useful for “gluing”  as an application devel-
opment methodology. These languages are typi-
cally interpreted, and thus programs are easy to 
write and the language can be used in an interac-
tive fashion. Interactive use of a programming 
language makes it attractive for “use-developers”  
[Rosson, 2005]. A use-developer is anybody, who 
creates applications with spreadsheets, interactive 
web-pages, or, as in this case, with a few lines 
using a scripting language.  

Many scripting, interpreted programming lan-
guages, such as Perl, PHP, Python, Ruby, Tcl, and 
R have been developed as FOSS and thus the 
FOSS platform is well suited for their use. The R 
language is developed for statistical computing 
but it is also a general purpose programming lan-
guage. These languages also support modular and 
object-oriented programming for creating larger 
applications. The openness of these languages has 
attracted developers to create and publish exten-
sions to them, thus making, e.g., database integra-
tion, data import, and development of graphical 
applications relatively easy. The main problem is 
that the tools developed for Python for example, 
are not directly usable by people who use for ex-
ample Perl. 

 

3.5   User  Inter face 

The user interface is often, but not necessarily, 
significantly different in the desktop and in the 
web platform, the web platform being dominated 
by the web browser with its own set of menus, 
toolbar buttons and intrinsic functionalities.  Some 
tools (e.g. uDig), because of their platform inde-
pendent nature or their significant client server 
interaction have begun to blur the distinction be-
tween a desktop and web end-user application. 

Lately two modern desktop GUI GIS that are 
FOSS have appeared: Quantum GIS and Map-
Window GIS. Both have a standard menu system, 
graphical dialogs, and other desktop software GUI 
elements common to proprietary GIS software.  
Both have a plug-in architecture for extension 
developers, making them suitable for supporting 
environmental models and modeling toolkits. 

MapWindow GIS is the first fully Microsoft .NET 
compatible open source GIS and has the advan-
tage of providing developers with ActiveX and 
.NET components that can be used in many com-
mon programming languages (i.e. Visual Basic, 
C#, Delphi, VBA, etc.)  The current MapWindow 
GIS development effort is centered on producing 
an enhanced suite of geoprocessing, data access 

and visualization components that can be used in 
both desktop and web-based (using ASP.NET) 
applications. 

Quantum GIS has the notable advantage of being 
fully cross-platform such that the same tools run 
on Microsoft, Macintosh, and Linux/GNU operat-
ing systems.  An effort to make Quantum GIS 
usable as a GUI for GRASS is making it possible 
to exploit GRASS’ analytical capabilities directly 
from Quantum GIS. 

Mapnik and Gtk2::Ex::Geo are FOSS toolkits for 
developing geospatially aware applications. Map-
nik focuses on cartographic quality and 
Gtk2::Ex::Geo focuses on providing a geovisuali-
zation widget and combining GUI and CLI. Map-
nik builds on a graphics library called AGG, 
which is FOSS. Gtk2::Ex::Geo is a collection of 
Perl modules and it builds on Gtk2-Perl software 
and Geo::Raster and Geo::Vector modules, which 
in turn build on libral and GDAL/OGR. 

OpenEV is a general viewer for geospatial data, 
and provides for example basic vector overlay 
capabili ties. OpenEV’s analytical capabil ities are 
limited and for the most part they have to be ac-
cessed via the command line. 

SAGA GIS is a desktop GUI environment and 
library for geoscientific analysis. 

uDig represents a new approach to building a 
desktop GIS as it treats web-based (OGC compli-
ant) data sets as similarly as possible to local data 
sets. uDig is also designed so that new, derived 
applications can be created by developers. 

 

3.6   End-user  applications 

At the top of the FOSS software stack are end-user 
applications – the tools that are used by managers, 
modelers, stakeholders and others to better under-
stand the environment.  These can be as simple as 
a customized map viewer on a web site showing 
the location of a particular environmental prob-
lem, or management area, or as complex as a fully 
integrated dynamic simulation watershed model.  
In each case, it is at this top layer where end users 
interface with the software.  Hence, this layer 
needs to be a critical focal point for the FOSS4G 
community, so that the tools developed at the un-
derlying layers meet the actual (not only per-
ceived) needs of end users.   

Interestingly many existing tools in this layer are 
already (and in many cases have been for years) 
FOSS tools.  For example, SWAT, HSPF, WASP, 
QUAL2E and other notable hydrologic simulation 



 

models have always been FOSS.  However, due to 
the lack of suitable FOSS4G tools to support these 
models (and because many were developed prior 
to the advent of GIS) current implementations of 
these models on FOSS4G platforms is limited.  In 
other words, it is possible to see the source code to 
the model, but not the to the proprietary GIS plat-
form upon which the model can run.  This prob-
lem is being addressed in many cases as efforts are 
underway to generate FOSS4G interfaces for these 
models. 

 

4.  WORKFLOWS FOR ENVIRONMENTAL 
MODELING AND MANAGEMENT  

4.1   Introduction 

Environmental modeling and management 
(EMM) are both activities, which increasingly 
happen computationally with desktop and web-
based tools. In this chapter we examine the work-
flow concept and user classes, we define a few 
representative EMM workflows that involve map-
ping or geospatial analysis, and we analyze how 
the FOSS tools are suited to the task. In the cases 
we also discuss some ongoing efforts to link 
FOSS4G and EMM. 

The goal in environmental modeling is to develop 
and use a model (for our purposes, we use the 
term “model”  to mean a computer based generali-
zation of a real system) of an environmental sys-
tem. Important domains in environmental model-
ing include geospatial, temporal, geophysical, 
chemical, and ecological. How geospatial domains 
can and should be included in modeling has to be 
assessed by the modeler. The historical limited 
availabili ty of spatial data has caused severe limi-
tations to modeling; the situation is getting better 
thanks to new remote sensing instruments and the 
development of standard datasets but problems 
remain due to reduced budgets and copyright re-
strictions.  

The motivation for modeling environmental sys-
tems may be for example scientific interest, im-
pact assessment, planning, or environmental 
management. A model is in practice either a de-
scriptive model, a simulation model, or an optimi-
zation model. A descriptive model is for example 
a database, which has a schema and which can be 
queried. A simulation model explains or predicts 
the behavior of a system over time (or space). An 
optimization model can be used to find the best 
values for decision variables.  

Environmental management typically has two 
phases: learning and deciding. Learning may 

mean simple assimilation of data or it may mean 
development of assessment skills. Descriptive and 
simulation models are often used for learning. 
Decision making is the task of selecting between 
alternatives, but the more time consuming tasks of 
inventing the alternatives and the assessment of 
their impacts are usually included in decision 
making. Simulation and optimization models can 
be used to invent or refine alternatives. Simulation 
models are routinely used for impact assessment. 
Optimization models can be used to suggest deci-
sions once evaluation criteria and methods for 
computing them are selected. 

The requirements that environmental modeling 
and management set for geospatial tools and 
methods may be organized according to the task at 
hand: 

• technical tasks: storage of data, format con-
version, etc, 

• supporting simple assimilation of data: view, 
visual overlay, etc, 

• a formal language: writing of specifications, 
programming a model, etc, 

• planning support: sketching of alternative 
spatial plans, 

• analytical tasks: preparation of input data, 
execution of model, evaluation of model out-
put, 

• support for assessment: expert advice, deci-
sion support, probabilistic reasoning, evalua-
tion of plans. 

Other requirements are very diverse and stem 
from the type of the project, i ts goals, and work 
habits: 

• requirements on the user interface: what are 
the computer skil ls of the user of the tool 

• computation time: wil l the tools be used in 
interactive sessions for example, 

• support for cooperation: wil l one user do eve-
rything or will there be several users with dif-
ferent skills. 

 

4.2    User  Classes 

End users of software typically have the expecta-
tion that there is a GUI which resembles in behav-
ior and appearance (as closely as possible) GUIs 
of the other software that they use. The need to 
study help texts and manuals is typically seen as a 
hindrance. One classification for users is the Ros-
son’s [2005] developer, user-developer, and user. 



 

Another classification is by the time the user can 
devote to using a tool: 10 minutes, one hour, one 
day, etc. There is no universal classification of 
users, the issue has to be considered in the begin-
ning of each tool development, modeling, and 
management project.  

Nielsen [1993] classifies existing user interface 
types and associated interaction styles. The inter-
action styles he lists are no interaction, question-
answer, command language, function keys, form 
fi ll-in, menus, and direct manipulation (with a 
mouse for example). The ease of use of a GUI 
comes from the fact that there is only a l imited set 
of possible actions and they are presented to the 
user. Command line interface (CLI) provides 
added functionality mainly because of the much 
larger set of possible actions and the possibility to 
combine tasks. CLI is possible to combine with 
GUI using free-form text input. CLI also leads to 
scripting which is essentially the stored (and 

documented) sequence of individual commands 
with optional use of variables for task generaliza-
tion. Coupling these methods enables the informa-
tion system to support sophisticated data process-
ing workflows. 

Developers are typically looking for a clean set of 
API’s to which they can integrate custom pro-
gramming interfaces.  

The current set of FOSS4G tools represents a 
broad spectrum of support for various users.  For-
tunately, there is a clear trend in the community to 
develop tools that are easier to use and more simi-
lar to other common software tools with respect to 
user interaction (e.g. they support standard mouse 
behavior and key sequences, and have common 
types of “GIS oriented”  tool bar buttons for map 
navigation, etc.) 

 

 

 

Figure 2.  Example of the cartographic workflow producing map output in both FOSS and proprietary soft-
ware. Data is depicting change in fishing effort by the Flatfish fishery off the California coast between 2001 

and 2003, during which time a fishing closure was instituted along the continental shelf.

 

Interpretation of Needs

Specifications
Interviews
Laws
Artistic interpretation
Models

Data Gathering

Web services
Database interaction
File system
Custom data generation
Web searches
Field work

Data Formatting

Scripting
Re-Projection
Geo-Referencing
Tiling
Mosaic
Re-Sampling

Processing

Map Algebra
Scripting
Application modelingCartographic Formatting

Artistic formatting
Stylization
Symbolization
Integration of disparate data
Meta data

Map Production

Format translation
Resolution translation
Packaging
Integration to other tools

Example using QGis and ArcMap to
produce similar cartographic output

using same workflow

QGis

ArcMap



As the environmental modeling community begins 
to adapt these tools to their specific modeling and 
end user needs, it is expected that the interfaces 
will continue to improve and be refined such that 
they are more acceptable to a wider array of users 
from all user classes. 

 

4.3 Case 1 – Car tographic map production 

The workflow to produce a map is initiated by an 
expressed need. In our case the need is related to 
EMM. In this case we define a map as a static 
visualization, essentially an image file, which 
typically combines geospatial information from 
various sources. Map production has traditionally 
been one of the main functions of a GIS. The 
workflow consists of the following steps: 

1. Interpretation of the expressed need for a 
map. 

2. Gathering of required data. 

3. Formatting of gathered datasets. 

4. Processing of datasets. 

5. Cartographic formatting of the requested 
map. 

6. Production of the requested map. 

Maps are arguably more useful in management 
than modeling, although graphical visualization 
of all geo-spatial processing is useful for data 
validation and understanding. Maps are useful 
both in learning about the case or system at hand, 
and at supporting decision making.  

In general the FOSS4G tools are good at steps 2 to 
4 but support for steps 5 and 6 are more limited. 
(Figure 2.) With tools l ike Mapnik and GIMP 
there is a good chance that these steps will be bet-
ter supported in the future. Also, we expect that 
many traditional mapping applications resulting 
in paper maps will  be replaced by interactive web 
based mapping in the future. 

 

4.4    Case 2 – Web-based mapping 

Web-based mapping is effectively a simplified, or 
canned, form of cartographic map production. The 
creation of maps can be done within a framework 
offering a limited number of datasets and layout 
options. Because of these l imitations the process 
of creating a map is more straightforward than 
traditional cartographic map production (Figure 
3.). 

Reasons for using web-based mapping to solve 
problems in environmental modeling and man-
agement include:  

1. Instant access to the latest version of analyti-
cal analysis and models by geographically 
separated teams. 

2. Collaboration in management can be 
achieved over the web. 

3. Interactiveness that can be built into the web-
mapping site. 

4. Cross platform nature and ease-of-use of 
browser-based solutions. 

The FOSS4G solutions for web-based mapping 
are very good mainly due to the popularity of 
MapServer and MapGuide Open Source.  Also 
notable as free though not open source, is the 
Google Map API which currently allows for free 
hosting of simple maps (appropriate for basic 
navigational needs) on any publicly accessible 
website. 

The analytical capabil ities of web-based mapping 
solutions on the FOSS platform are limited by 
technical problems. Solutions which use GRASS 
as a backend for MapServer exist but are not op-
timal in a technical sense. The development of 
scripting language interfaces to geo-analytical 
libraries and the development of the actual ana-
lytical l ibraries both in C and in Java have a po-
tential to solve this problem. The former will en-
able server-side solutions and the latter (Java) will 
also enable client-side solutions. 

 

4.4    Case 3 – Numer ical Simulation 

Environmental simulation models often require 
pre or post-processing of geospatial data, or they 
can be tightly l inked to a GIS, using it as a GUI. 
Harvey and Han [2002] have presented an excel-
lent analysis of the relevance of FOSS to hydraulic 
and hydrological models. Several environmental 
models are available as FOSS, for example 
MODFLOW, which is a groundwater simulation 
model, and SWAT, which is a river basin scale 
land management impact assessment model. It is 
interesting to note that although SWAT is FOSS, 
it uses a proprietary GIS for a GUI (although this 
is currently changing – see below). A general im-
pression (supported by discussions with modelers) 
is that FOSS models are popular and get used. 

The general workflow of modeling is  

1. Setting of objectives and scope and scale of 
the modeled system. 



 

2. Data collection. 

3. Development or selection of a model. 

4. Preparation of input data. 

5. Calibration and validation of the model. 

6. Using the model. 

7. Analysis of the model output. 

Geospatial tools are typically needed at steps 2, 4, 
7. (Figure 4.) 

 

 

Figure 3.  Example of web-based geo-spatial interface and workflow. 

 

Three interesting and complementary efforts to 
merge environmental modeling with FOSS4G 
tools are currently under way at the United States 
Environmental Protection Agency (US EPA) Of-
fice of Science and Technology (OST), US EPA 
Office of Research and Development (ORD), and 
the United States Department of Agriculture 
(USDA).   

In each case an existing environmental model or 
modeling system is being adapted to explicitly use 
geospatial data in a FOSS4G based GIS environ-
ment.  Specifically, OST has recently awarded a 
five year contract to a consortia of consulting 
firms and universities to improve and provide 
support for the BASINS watershed modeling sys-
tem.  The awarded team specifically proposed 

migrating BASINS from a proprietary GIS system 
to a FOSS4G GIS system (namely MapWindow 
GIS).  Similarly ORD is currently investing in the 
adaptation of MapWindow, GDAL, JTS, and 
other FOSS4G tools to support a wide variety of 
EPA environmental modeling tools, beginning 
with the FRAMES/3MRA system. USDA through 
it’s Texas A&M university collaborators are fol-
lowing suit with the development of a new GIS 
interface to its SWAT watershed model, again 
based on MapWindow and other FOSS4G tools. 

4.5    Case 4 – Environmental management 

Environmental management workflows consist of: 

1. Monitoring the state of the environment. 

2. Planning of actions for improving the state. 

Capture User Needs

Zoom
Query
Interactive spatial capture

Data Gathering

Web services
Database interaction
File system

Cartographic Formatting

Stylization
Symbolization

Map Production

Format production
Packaging

Example web-based
application utilizing

Mapserver and KaMap AJAX
driven UI

DM Solutions Group

Simplified Web-Based
Map Generation Workflow



 

3. Responding to actions, which affect the envi-
ronment. 

4. Increasing awareness of people of the state of 
the environment 

The workflow of environmental management can 
be split into the above parts, all of which consist 
of independent workflows described in the first 
three cases of this section. This long-term work-

flow is perhaps best supported with developing a 
comprehensive geospatial database of the system, 
which is managed. PostGIS is one example of a 
tool that is well suited for this purpose. It is possi-
ble to build various stacks on the top of PostGIS to 
support real-time or ongoing monitoring, analyti-
cal needs, decision making, and mapping for de-
livering information. 

 

 

Figure 4.  Example FOSS based modeling system integrating spatial data and GIS tools such as PostGIS, 
OGR/GDAL, and Mapserver.  3-D circulation models are used to simulate and forecast physical parameters 

that are then used for environmental and ecosystem management. 

In the domain of environmental management 
most projects and project proposals currently in-
clude a component, which aims to develop soft-
ware and databases. These components may be 
quite large in large international cooperative pro-
jects. For example there is an International 
Groundwater Resources Assessment Centre 
(IGRAC), which works under auspices of 
UNESCO and WMO. Perhaps the most important 
part of the work of IGRAC is the development of 
Global Groundwater Information System (GGIS). 
This information system draws on several other 

initiatives and data collection efforts. Many pro-
jects similar to IGRAC’s GGIS exist. The poten-
tial amount of data in such databases and accessi-
ble by such information systems may be huge. 
Also the complexity of the data may be over-
whelming calling for dedicated meta data projects. 

Many international organizations and initiatives 
such as FAO [Ticheler, 2005] are currently inves-
tigating FOSS4G for their needs in developing 
Internet-based information systems. Another ex-
ample of a similar effort is the Managing Informa-
tion for Local Environment in Sri Lanka (MILES) 

Objectives and
Scope

Community needs
Scientific objectives
Technology capabilities

Data Collection

Custom data generation
Field work (GPS)
Web services
Database interaction
File system
Web searches

Using Model

Application spatially
Integration with DSTs
Deployment of technology

Analysis of Outputs

Decision support
Scientific advancement

Example FOSS
Environmental Modeling

OHSU - OGI School of Science
and Engineering

ccalmr.ogi.edu

3-D Circulation modeling of the
Columbia River and Plume

Sensors

Model Development

Capabilities
Compatibility
Technology
Grid resolution

Prepare Inputs

Custom formatting
Splice
Interpolate
Geo-Reference

Calibration and
Validation

Statistical analysis
Ground truth
Interviews
Numerical analysis

Grids



 

project7. MILES has run a virtual seminar on is-
sues concerning the linking of FOSS4G and envi-
ronmental management. 

 

5.     DISCUSSION 

As computing becomes more ubiquitous, the sig-
nificance of one single tool becomes less impor-
tant and focus shifts more towards software stacks 
and platforms. It is difficult to assess how much of 
this is conscious “empire building” by some soft-
ware companies and how much is natural evolu-
tion. Organizations are clearly making strategic 
decisions on software platforms and stacks that 
they use and support. Although it is a believable 
trend that more users and in fact user-developers, 
the platform on which they develop is often very 
restricted and dictated by institutional guidelines. 

The dividing line between FOSS and proprietary 
software is fuzzy, partly because it is in the inter-
est of developers of proprietary software to make it 
fuzzy and partly because the end-users are getting 
more and more reluctant to buy software. People 
are expecting web browsers and other common 
tools to be free of charge. Also, depending on li-
cense of the particular FOSS tool, proprietary 
tools may include FOSS. Advances in standards 
aiming for interoperabili ty make it possible to co-
use free and proprietary tools. 

It is easy for a tool developer to fall into the trap 
of slowly expanding the scope of his tool, promot-
ing the solving of ever bigger and more complex 
problem with his tool. From the user’s point of 
view the benefit in this evolution is that he can 
“grow with the software”  not having to go through 
the learning curve of other tools. The developer of 
a proprietary product is often happy with this, 
since he or she does not have to share income with 
others. After a long experience in this kind of fa-
mil iar worlds, the FOSS world must look chaotic 
and complex. 

In the FOSS world the barriers to interoperabili ty 
are much lower and thus the software stack tends 
to be thicker in FOSS platform than in the pro-
prietary platform. There is competition in the 
FOSS4G world, but it is not preventing evolution 
of individual tools, stacks, or platforms. Code 
sharing is encouraged, as exemplified by activities 
within so called “ foundation projects”  in the OS-
Geo Foundation. The competition in the FOSS4G 
world seems to happen on two distinct domains: 

                                                   
7 http://www.miles.geo.ar.tum.de 

on community development and on technical and 
usabil ity merit.  

Our examples show that it is possible to build 
software stacks from current FOSS4G to support 
EMM workflows. IT professionals have long em-
braced the concepts of platforms and software 
stacks, now the same is happening in the domain 
of EMM. It is important to include these concepts 
into the communication between EMM and 
FOSS4G communities. This communication for 
example conveys the needs and requirements of 
the EMM practitioners to software developers, 
who can analyze them and understand what needs 
to be done. Common platforms and interoperabil-
ity are important for the users. When design is 
based on selection among proprietary products, 
the software stack concept is usually not usable. 
The result is that decisions may be based on 
somewhat questionable analysis, for example 
based on just supported platforms and brand 
names etc. 

FOSS4G still  caters in many cases to advanced 
users. The FOSS4G solutions for application areas 
are usually not as “packaged”  as those offered for 
proprietary products, although companies exist, 
which specialize on delivering complete FOSS 
solutions. This is partly a fundamental difference 
but it may also change if and when people work-
ing in application areas discover FOSS4G. Addi-
tionally it is incumbent upon developers of 
FOSS4G tools to improve the ease of use, installa-
tion, and integration of such tools so that they can 
be more readily adapted by the environmental 
modeling community. Potential improvements 
might include: 

• Providing compiled binaries for multiple plat-
forms and operating systems, 

• Developing demonstration applications that 
show how one might integrate FOSS4G tools 
with legacy FORTRAN or other existing en-
vironmental modeling code, 

• Generating simplified installation packages 
that can be readily adapted and integrated 
with the installation package of a particular 
model, 

• Enhancing existing user communities and 
developing new discussion forums targeted 
specifically at FOSS4G users in the environ-
mental modeling community, 

• Clarifying the meaning and interpretation of 
various FOSS license agreements, and  



 

• Seeking out opportunities to adapt FOSS4G 
tools to the specific needs of the EMM com-
munity. 

In the examples we mention above in Case 3, en-
vironmental numerical modeling, the particular 
funding agency has chosen FOSS4G solutions 
because of the opportunities to redistribute result-
ing modeling tools freely to end-users and to sup-
port general goals of openness and transparency 
with respect to modeling tools.  Indeed, the main 
marketing advantages of FOSS4G are its low cost, 
open licensing, and modular nature allowing di-
verse tools.  

Certainly, FOSS4G has been around and evolved 
for a very long time, GRASS is the prime example 
of that. The current challenge for FOSS4G is to 
develop working software stacks, which provide 
solutions that are attractive to end-users and peo-
ple working in the application areas. The open 
data formats and data exchange protocols are cur-
rently shaping the industry and FOSS4G are prov-
ing to be very good with them. 

 

6. CONCLUSIONS 

FOSS4G has many advantages, which should be 
attractive to modelers and managers like low cost, 
easy dissemination, code transparency, natural 
support for extensions and experimentation. The 
greatest barriers for their increased use in the en-
vironmental modeling and management commu-
nity seem to be the (sometimes) perceived (low) 
importance of geospatial aspect, some technical 
obstacles, and low visibil ity. 

In this paper we have identified and described 
elements in environmental modeling and man-
agement, which require or benefit from geospatial 
computation. We have also described geospatial 
software, focusing on FOSS tools and solutions, 
and we have discussed how these tools can be used 
to accomplish tasks of environmental modeling 
and management. 

 

7. ACKNOWLEDGEMENTS 

The authors would especially like to thank the 
people at the various email lists: e.g., Geowank-
ing, GRASS users, OSGeo discuss, OpenNR, 
freegis l ist, etc. for their ideas, visions, and enthu-
siasm. Many of these people have created we-
blogs, wikis, and websites which have provided 
invaluable background information for this paper. 
Some of the ideas presented in this paper no doubt 
originate in some of these sources. The Open Geo-

spatial Consortium should also be acknowledged 
for its work in developing and publishing open 
specifications, which has been a great motivation 
for many FOSS4G developers. 

 

8. REFERENCES 

Anonymous, The free software definition. 
http://www.fsf.org/licensing/essays/free-
sw.html (URL accessed 26.4.2006) 

Bonnici, K., To international markets with com-
petitive projects. Avopaikka, Open source 
business news 1/2006. Finnish Centre for 
Open Source Software. On page 6. 

Daratech Inc., Press Release: Worldwide GIS 
Revenue Forecast to Top $2.02 Bil lion in 
2004, up 9.7% over 2003, 
http://www.daratech.com/press/releases/2004
/041019.html (URL accessed 25.4.2006) 

Gross, T., Hood, R., Voinov, A., Building a Com-
munity Modeling Culture. (in prep.) 

Harvey, H. and Han, D., The relevance of Open 
Source to hydroinformatics. Journal of Hy-
droinformatics. (4) 2002. pp 219-234. also 
available at 
http://public.hamishharvey.fastmail.fm/publi
cations/2002-10-jhydroinf-open-source/open-
source-hydroinformatics.pdf (URL accessed 
10.3.2006) 

Karssenberg, D. and De Jong, K., Dynamic envi-
ronmental modelling in GIS: 1. Modelling in 
three spatial dimensions. Int. J. Geog. Inf. 
Sci. 559-579. 5(19) 2005. 

Maxwell, T., Villa, F., and Costanza, R., Spatial 
Modeling Environment. 
http://www.uvm.edu/giee/SME3/ (URL ac-
cessed 26.4.2006). The SME software is 
available at SourceForge: 
http://sourceforge.net/projects/smodenv  
(URL accessed 26.4.2006). 

Neteler, M. and Mitasova, H., Open Source GIS: 
A GRASS GIS Approach. Second Edition. 
The Kluwer international series in Engineer-
ing and Computer Science (SECS): Volume 
773. Kluwer Academic Publishers / 
Springer, 420 pp. Boston, 2004. 

Nielsen, J., Usabili ty engineering. Morgan Kauf-
mann. 362 pp. 1993. 

Rosson, M.B., The end of users. Keynote presen-
tation at OOPSLA 2005 conference, October 
16-20, 2005, San Diego, California. 

Ramsey, P., The State of Open Source GIS, 
http://www.refractions.net/white_papers/inde
x.php?file=2005-2-2_oss_briefing.data (ac-
cessed 24.4.2006) 



 

The JUMP-Project.Org, Project overview. 
http://www.jump-project.org/project.php? 
PID=JTS&SID=OVER (URL accessed 
10.3.2006) 

Ticheler, J., SDI Architecture diagram. 
http://193.43.36.138/relatedstuff/index_html/
document_view (URL accessed 10.3.2006) 

Tomlin, C.D., Geographic Information Systems 
and Cartographic Modelling. Prentice-Hall. 
Englewood Cliffs, NJ, 1990. 

Wikstrøm, M. and Tveite, H. 2005. Post-
greSQL/PostGIS and MapServer compared 
to ArcSDE and ArcIMS in performance on 
large geographical data sets. Kart og plan (3) 
2005. pp 185-192. (in norvegian) 

 


